Performance plastics Security Featured | Lecture : 4 minutes

    3 Optimization Solutions for the Mining Sector

    Reduce corrosion

    Mines are among the most demanding environments for structures and production equipment. Various factors, such as significant temperature variations, high humidity levels and the presence of chemical products and corrosive agents, impact the service life of structural components. Since these parts are often made of steel, they are susceptible to premature wear caused by corrosion. A structure affected by rust will require more maintenance and upkeep and can potentially be less safe.

    Is steel suitable for the mining sector?

    Although recognized for its strength and advantageous mechanical properties, steel tends to corrode, particularly in environments where stressors promote the development of rust (high temperatures, high humidity levels and contact with corrosive agents). Rust is not only an aesthetic issue; it also affects the integrity of steel. The appearance of rust can cause steel to lose its mechanical properties and weaken metal structures.. 

    FRP: a more suitable material

    As previously mentioned, steel is not the best material for mining environments; composite materials are by far more efficient and durable. For example, FRP (fibre reinforced plastic), a high-performance material, can easily replace steel when manufacturing structural elements. In fact, it is more than just a substitute; its properties surpass those of steel in a number of applications. When used in mining environments, FRP offers many advantages:

    • As resistant as steel
    • 75% lighter than steel
    • Has excellent chemical resistance
    • Possesses rustproof properties (even when in contact with water or corrosive agents)
    • Requires little maintenance
    • Does not need to be welded (simple and quick installation)
    • Has a longer service life than steel

    Optimize bulk transportation

    The importance of reducing friction

    Although friction may be viewed as a minor issue with little influence on the production rate or the speed of bulk material transport, it is a critical aspect that should be addressed. In fact, optimizing your equipment to minimize friction will produce favourable results. While it is impossible to eliminate friction completely, it can be considerably reduced. In addition to prematurely wearing out parts and components, friction hinders the conveying and transportation of bulk material. For instance, the friction of raw materials against the walls of a chute spilling onto a conveyor generates friction, slowing down the flow of material. Minimizing friction improves the speed at which the material is unloaded onto the chute, thereby stabilizing the flow of material, eliminating system clogging and reducing the frequency of external interventions. It also reduces wear, resulting in fewer maintenance shutdowns.

    How to reduce friction

    Choose materials with low coefficients of friction. For example, a stainless steel chute can be easily optimized by attaching anti-friction liners to its walls. Performance plastics such as UHMW TIVAR 88-2 have been developed precisely for this purpose. TIVAR 88-2 is highly resistant to abrasion and promotes sliding, allowing the material to move on its surface more easily. Since the coefficient of friction of stainless steel is around 0.30, installing a TIVAR 88-2 liner, which has a coefficient of friction of 0.08, will significantly reduce friction. This UHMW can also be welded, making it possible to design liners that are perfectly adapted to your needs, regardless of the size or shape of the chute.

    Reduce the risk of accidents

    As most of you know, mining is a dangerous occupation. It is therefore important to reduce the risk of accidents caused by machinery, equipment, falls, noise, impacts and vibrations

    Reducing risks related to machinery and equipment

    To reduce the risks associated with equipment, machinery and conveyors, limiting access to moving parts is by far the most effective solution. For instance, protective guards, such as shields made of polycarbonate—a material as transparent as glass but 250 times more resistant to impact—can be installed.

    It is also possible to limit access by using FRP gratings, which are lighter and more durable than metal ones, especially in conditions that are too demanding for metals. In addition, FRP gratings never rust and are stronger than those made of steel.

    Reducing the risk of falls

    When affected by rust, structures, walkways, ladders and guardrails can increase the risk of falls.

    To determine important factors that might influence your choice, please read our article, “4 Questions to Help You Choose the Right Structural Material.”

    In addition to their poor resistance to corrosion, steel structures have rather limited anti-slip properties. Indeed, when used in humid and highly dusty environments, they become covered in a layer of fine particles, reducing their grip and increasing the risk of falls. FRP has a non-slip finish and is nonconductive, thus limiting the risk of same-level or lower-level falls.

    Reduce the risks related to noise, impact and vibration

    Noise is one of the major causes of work-related accidents and occupational diseases. Exposure to high levels of noise has significant physical impacts.

    If you would like to learn more on this topic, please read our article, “The Impact of Workplace Noise.”

    Reduce impacts on metal surfaces

    Shocks and impacts caused by bulk material moving on conveyors and in metal chutes can generate noise levels that are above the acceptable threshold. In situations like these, polymer liners can be used to absorb impacts and thereby reduce noise levels. Plastics such as UHMWs are perfect for these types of applications. 

    Articles recommandés

    Performance plastics Food industry Security Featured Food & beverage plastics

    What is the difference between UHMW and HDPE?

    Part of the polyethylene family, UHMW and HDPE are thermoplastics with distinct characteristics. In this article, we wil...

    Performance plastics Security Featured Food & beverage plastics

    Polyethylene: Advantages and Applications

    What is polyethylene (PE)? PE, or ethylene polymers, are a family of thermoplastics widely used because of their low cos...

    Performance plastics Food industry Security Featured

    The Applications and Advantages of High-Performance Nylons

    What are high-performance nylons? Natural nylons do not contain any additives. Part of the high-performance polymer fami...

    E-book : Les plastiques de performance pour l'industrie alimentaire.

    Quel est le plastique qui répond à mon besoin?

    Vous aimeriez recevoir les nouveaux articles publiez?

    Inscrivez votre adresse courriel et recevez automatiquement les articles qui se publient.